Search results for "False alarm rate"
showing 10 items of 10 documents
Comparative study to predict toxic modes of action of phenols from molecular structures.
2013
Quantitative structure-activity relationship models for the prediction of mode of toxic action (MOA) of 221 phenols to the ciliated protozoan Tetrahymena pyriformis using atom-based quadratic indices are reported. The phenols represent a variety of MOAs including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles and soft electrophiles. Linear discriminant analysis (LDA), and four machine learning techniques (ML), namely k-nearest neighbours (k-NN), support vector machine (SVM), classification trees (CTs) and artificial neural networks (ANNs), have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. M…
Deep learning for core-collapse supernova detection
2021
The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the Advanced LIGO-Virgo network during the second observing run, O2. We trained a newly developed Mini-Inception Resnet neural network using time-frequency images corresponding to injections of simulated phenomenological signals, which mimic the waveforms obtained in 3D num…
Study time effects in recognition memory.
2004
We empirically tested the assumption that study time increases recognition accuracy because the storage of information is better when study time is longer as Shiffrin and colleagues have reported, an assumption common to parallel models of recognition. In the present study with 123 subjects, we examined the effect of item strength on four measures: hit rate, false alarm rate, d′, and β, for a single-word recognition task with longer study times than those usually used in the literature. Analysis indicated significant increase for hit rate and d′ and a decrease in false alarm rate, as one goes from weak to stronger study conditions, and a change in ln(β) when study time is greater than 1 se…
PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES
2021
Abstract. Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are lowering. Anomaly detection is one of the popular remote sensing applications, which benefits from real-time solutions. A real-time solution has its limitations, for example, due to a large amount of hyperspectral data, platform’s (drones or a cube satellite) constraints on payload and processing capability. Other examples are the limitations of available energy and the complexity of the machine learning models. When anomalies are detected in real-time from the hyp…
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
2017
On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…
Computational identification of chemical compounds with potential anti-Chagas activity using a classification tree
2021
Chagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action. A large dataset of 584 compounds, obtained from the Drugs for Neglected Diseases initiative, was selected to develop the computational model. Dragon software was used to calculate the molecular descriptors and WEKA software to obtain the classification tree. The best model shows accuracy greater than 93.4% for the training set; the tree was also validated using a 10-fold cross-validation p…
Detection and Recognition of Target Signals in Radar Clutter via Adaptive CFAR Tests
2006
In this paper, adaptive CFAR tests are described which allow one to classify radar clutter into one of several major categories, including bird, weather, and target classes. These tests do not require the arbitrary selection of priors as in the Bayesian classifier. The decision rule of the recognition techniques is in the form of associating the p-dimensional vector of observations on the object with one of the m specific classes. When there is the possibility that the object does not belong to any of the m classes, then this object is to be classified as belonging to one of the m classes or to class m+1 whose distribution is unspecified. The tests are invariant to intensity changes in the …
Minimal learning machine in anomaly detection from hyperspectral images
2020
Abstract. Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
2017
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
Deep learning algorithms for gravitational waves core-collapse supernova detection
2021
The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the Advanced LIGO-Virgo network during the second observation run, O2. We trained three newly developed convolutional neural networks using time-frequency images corresponding to injections of simulated phenomenological signals, which mimic the waveforms obtained in 3D nume…